Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Training-free Measures Based on Algorithmic Probability Identify High Nucleosome Occupancy in DNA Sequences (1708.01751v3)

Published 5 Aug 2017 in q-bio.QM, cs.IT, math.IT, and q-bio.GN

Abstract: We introduce and study a set of training-free methods of information-theoretic and algorithmic complexity nature applied to DNA sequences to identify their potential capabilities to determine nucleosomal binding sites. We test our measures on well-studied genomic sequences of different sizes drawn from different sources. The measures reveal the known in vivo versus in vitro predictive discrepancies and uncover their potential to pinpoint (high) nucleosome occupancy. We explore different possible signals within and beyond the nucleosome length and find that complexity indices are informative of nucleosome occupancy. We compare against the gold standard (Kaplan model) and find similar and complementary results with the main difference that our sequence complexity approach. For example, for high occupancy, complexity-based scores outperform the Kaplan model for predicting binding representing a significant advancement in predicting the highest nucleosome occupancy following a training-free approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.