Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Minimality, distality and equicontinuity for semigroup actions on compact Hausdorff spaces (1708.00996v9)

Published 3 Aug 2017 in math.DS

Abstract: Let $\pi\colon T\times X\rightarrow X$ with phase map $(t,x)\mapsto tx$, denoted $(\pi,T,X)$, be a \textit{semiflow} on a compact Hausdorff space $X$ with phase semigroup $T$. If each $t\in T$ is onto, $(\pi,T,X)$ is called surjective; and if each $t\in T$ is 1-1 onto $(\pi,T,X)$ is called invertible and in latter case it induces $\pi{-1}\colon X\times T\rightarrow X$ by $(x,t)\mapsto xt:=t{-1}x$, denoted $(\pi{-1},X,T)$. In this paper, we show that $(\pi,T,X)$ is equicontinuous surjective iff it is uniformly distal iff $(\pi{-1},X,T)$ is equicontinuous surjective. As applications of this theorem, we also consider the minimality, distality, and sensitivity of $(\pi{-1},X,T)$ if $(\pi,T,X)$ is invertible with these dynamics. We also study the pointwise recurrence and Gottschalk's weak almost periodicity of $\mathbb{Z}$-flow with compact zero-dimensional phase space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.