Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Group of Disjoint 2-Spheres in 4-Space (1708.00358v2)

Published 1 Aug 2017 in math.GT

Abstract: We compute the group of link homotopy classes of link maps of two 2-spheres into 4-space. It turns out to be free abelian, generated by geometric constructions applied to the Fenn-Rolfsen link map and detected by two self-intersection invariants introduced by Paul Kirk in this setting. As a corollary, we show that any link map with one topologically embedded component is link homotopic to the unlink. Our proof introduces a new basic link homotopy, which we call a Whitney homotopy, that shrinks an embedded Whitney sphere constructed from four copies of a Whitney disk. Freedman's disk embedding theorem is applied to get the necessary embedded Whitney disks, after constructing sufficiently many accessory spheres as algebraic duals for immersed Whitney disks. To construct these accessory spheres and immersed Whitney disks we use the algebra of metabolic forms over the group ring Z[Z], and introduce a number of new 4-dimensional constructions, including maneuvers involving the boundary arcs of Whitney disks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube