Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Point Transformations and the Relationships Among Anomalous Diffusion, Normal Diffusion and the Central Limit Theorem (1708.00074v7)

Published 31 Jul 2017 in math-ph and math.MP

Abstract: We present new connections among anomalous diffusion (AD), normal diffusion (ND) and the Central Limit Theorem. This is done by defining a point transformation to a new position variable, which we postulate to be Cartesian, motivated by considerations from super-symmetric quantum mechanics. Canonically quantizing in the new position and momentum variables according to Dirac gives rise to generalized negative semi-definite and self-adjoint Laplacian operators. These lead to new generalized Fourier transformations and associated probability distributions, which are form invariant under the corresponding transform. The new Laplacians also lead us to generalized diffusion equations, which imply a connection to the CLT. We show that the derived diffusion equations capture all of the Fractal and Non-Fractal Diffusion equations of O'Shaughnessy and Procaccia. However, we also obtain new equations that cannot (so far as we are able to tell) be expressed as examples of the O'Shaughnessy and Procaccia equations. These equations also possess asymptotics that are related to a CLT but with bi-modal distributions as limits. The results show, in part, that experimentally measuring the diffusion scaling law can determine the point transformation (for monomial point transformations). We also show that AD in the original, physical position is actually ND when viewed in terms of displacements in an appropriately transformed position variable. Finally, we show that there is a new, anomalous diffusion possible for bi-modal probability distributions that also display attractor behavior which is the consequence of an underlying CLT.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.