Stochastic thermodynamics of periodically driven systems: Fluctuation theorem for currents and unification of two classes (1707.08100v2)
Abstract: Periodic driving is used to operate machines that go from standard macroscopic engines to small non-equilibrium micro-sized systems. Two classes of such systems are small heat engines driven by periodic temperature variations and molecular pumps driven by external stimuli. Well known results that are valid for nonequilibrium steady states of systems driven by fixed thermodynamic forces, instead of an external periodic driving, have been generalized to periodically driven heat engines only recently. These results include a general expression for entropy production in terms of currents and affinities and symmetry relations for the Onsager coefficients from linear response theory. For nonequilibrium steady states, the Onsager reciprocity relations can be obtained from the more general fluctuation theorem for the currents. We prove a fluctuation theorem for the currents for periodically driven systems. We show that this fluctuation theorem implies a fluctuation dissipation relation, symmetry relations for Onsager coefficients and further relations for nonlinear response coefficients. The setup in this paper is more general than previous studies, i.e., our results are valid for both heat engines and molecular pumps. The external protocol is assumed to be stochastic in our framework, which leads to a particularly convenient way to treat periodically driven systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.