Papers
Topics
Authors
Recent
2000 character limit reached

Globally Constructed Adaptive Local Basis Set for Spectral Projectors of Second Order Differential Operators (1707.07346v2)

Published 23 Jul 2017 in math.NA, math-ph, and math.MP

Abstract: Spectral projectors of second order differential operators play an important role in quantum physics and other scientific and engineering applications. In order to resolve local features and to obtain converged results, typically the number of degrees of freedom needed is much larger than the rank of the spectral projector. This leads to significant cost in terms of both computation and storage. In this paper, we develop a method to construct a basis set that is adaptive to the given differential operator. The basis set is systematically improvable, and the local features of the projector is built into the basis set. As a result the required number of degrees of freedom is only a small constant times the rank of the projector. The construction of the basis set uses a randomized procedure, and only requires applying the differential operator to a small number of vectors on the global domain, while each basis function itself is supported on strictly local domains and is discontinuous across the global domain. The spectral projector on the global domain is systematically approximated from such a basis set using the discontinuous Galerkin (DG) method. The global construction procedure is very flexible, and allows a local basis set to be consistently constructed even if the operator contains a nonlocal potential term. We verify the effectiveness of the globally constructed adaptive local basis set using one-, two- and three-dimensional linear problems with local potentials, as well as a one dimensional nonlinear problem with nonlocal potentials resembling the Hartree-Fock problem in quantum physics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.