Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

HMM-based Writer Identification in Music Score Documents without Staff-Line Removal (1707.06828v2)

Published 21 Jul 2017 in cs.CV

Abstract: Writer identification from musical score documents is a challenging task due to its inherent problem of overlapping of musical symbols with staff lines. Most of the existing works in the literature of writer identification in musical score documents were performed after a preprocessing stage of staff lines removal. In this paper we propose a novel writer identification framework in musical documents without removing staff lines from documents. In our approach, Hidden Markov Model has been used to model the writing style of the writers without removing staff lines. The sliding window features are extracted from musical score lines and they are used to build writer specific HMM models. Given a query musical sheet, writer specific confidence for each musical line is returned by each writer specific model using a loglikelihood score. Next, a loglikelihood score in page level is computed by weighted combination of these scores from the corresponding line images of the page. A novel Factor Analysis based feature selection technique is applied in sliding window features to reduce the noise appearing from staff lines which proves efficiency in writer identification performance.In our framework we have also proposed a novel score line detection approach in musical sheet using HMM. The experiment has been performed in CVC-MUSCIMA dataset and the results obtained that the proposed approach is efficient for score line detection and writer identification without removing staff lines. To get the idea of computation time of our method, detail analysis of execution time is also provided.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.