Naive Bayes Classification for Subset Selection
Abstract: This article focuses on the question of learning how to automatically select a subset of items among a bigger set. We introduce a methodology for the inference of ensembles of discrete values, based on the Naive Bayes assumption. Our motivation stems from practical use cases where one wishes to predict an unordered set of (possibly interdependent) values from a set of observed features. This problem can be considered in the context of Multi-label Classification (MLC) where such values are seen as labels associated to continuous or discrete features. We introduce the \nbx algorithm, an extension of Naive Bayes classification into the multi-label domain, discuss its properties and evaluate our approach on real-world problems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.