Holonomic Poisson manifolds and deformations of elliptic algebras (1707.06035v1)
Abstract: We introduce a natural nondegeneracy condition for Poisson structures, called holonomicity, which is closely related to the notion of a log symplectic form. Holonomic Poisson manifolds are privileged by the fact that their deformation spaces are as finite-dimensional as one could ever hope: the corresponding derived deformation complex is a perverse sheaf. We develop some basic structural features of these manifolds, highlighting the role played by the divergence of Hamiltonian vector fields. As an application, we establish the deformation-invariance of certain families of Poisson manifolds defined by Feigin and Odesskii, along with the "elliptic algebras" that quantize them.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.