Papers
Topics
Authors
Recent
Search
2000 character limit reached

Laurent Inversion

Published 18 Jul 2017 in math.AG | (1707.05842v1)

Abstract: We describe a practical and effective method for reconstructing the deformation class of a Fano manifold X from a Laurent polynomial f that corresponds to X under Mirror Symmetry. We explore connections to nef partitions, the smoothing of singular toric varieties, and the construction of embeddings of one (possibly-singular) toric variety in another. In particular, we construct degenerations from Fano manifolds to singular toric varieties; in the toric complete intersection case, these degenerations were constructed previously by Doran--Harder. We use our method to find models of orbifold del Pezzo surfaces as complete intersections and degeneracy loci, and to construct a new four-dimensional Fano manifold.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.