Papers
Topics
Authors
Recent
2000 character limit reached

Low-complexity implementation of convex optimization-based phase retrieval (1707.05797v3)

Published 18 Jul 2017 in cs.IT, math.IT, and math.OC

Abstract: Phase retrieval has important applications in optical imaging, communications and sensing. Lifting the dimensionality of the problem allows phase retrieval to be approximated as a convex optimization problem in a higher-dimensional space. Convex optimization-based phase retrieval has been shown to yield high accuracy, yet its low-complexity implementation has not been explored. In this paper, we study three fundamental approaches for its low-complexity implementation: the projected gradient method, the Nesterov accelerated gradient method, and the alternating direction method of multipliers (ADMM) method. We derive the corresponding estimation algorithms and evaluate their complexities. We compare their performance in the application area of direct-detection mode-division multiplexing. We demonstrate that they yield negligible estimation penalties (less than 0.2 dB for transmitter processing and less than 0.6 dB for receiver equalization) while yielding low computational cost, as their implementation complexities all scale quadratically in the number of unknown parameters. Among the three methods, ADMM achieves convergence after the smallest number of iterations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.