Universal Quantum Computation with Gapped Boundaries
Abstract: This Letter discusses topological quantum computation with gapped boundaries of two-dimensional topological phases. Systematic methods are presented to encode quantum information topologically using gapped boundaries, and to perform topologically protected operations on this encoding. In particular, we introduce a new and general computational primitive of topological charge measurement and present a symmetry-protected implementation of this primitive. Throughout the Letter, a concrete physical example, the $\mathbb{Z}_3$ toric code ($\mathfrak{D}(\mathbb{Z}_3)$), is discussed. For this example, we have a qutrit encoding and an abstract universal gate set. Physically, gapped boundaries of $\mathfrak{D}(\mathbb{Z}_3)$ can be realized in bilayer fractional quantum Hall $1/3$ systems. If a practical implementation is found for the required topological charge measurement, these boundaries will give rise to a direct physical realization of a universal quantum computer based on a purely abelian topological phase.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.