Papers
Topics
Authors
Recent
2000 character limit reached

Neural Reranking for Named Entity Recognition

Published 17 Jul 2017 in cs.CL | (1707.05127v1)

Abstract: We propose a neural reranking system for named entity recognition (NER). The basic idea is to leverage recurrent neural network models to learn sentence-level patterns that involve named entity mentions. In particular, given an output sentence produced by a baseline NER model, we replace all entity mentions, such as \textit{Barack Obama}, into their entity types, such as \textit{PER}. The resulting sentence patterns contain direct output information, yet is less sparse without specific named entities. For example, "PER was born in LOC" can be such a pattern. LSTM and CNN structures are utilised for learning deep representations of such sentences for reranking. Results show that our system can significantly improve the NER accuracies over two different baselines, giving the best reported results on a standard benchmark.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.