The general form of the Euler--Poisson--Darboux equation and application of transmutation method
Abstract: In the paper we find solution representations in the compact integral form to the Cauchy problem for a general form of the Euler--Poisson--Darboux equation with Bessel operators via generalized translation and spherical mean operators for all values of the parameter $k$, including also not studying before exceptional odd negative values. We use a Hankel transform method to prove results in a unified way. Under additional conditions we prove that a distributional solution is a classical one too. A transmutation property for connected generalized spherical mean is proved and importance of applying transmutation methods for differential equations with Bessel operators is emphasized. The paper also contains a short historical introduction on differential equations with Bessel operators and a rather detailed reference list of monographs and papers on mathematical theory and applications of this class of differential equations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.