Papers
Topics
Authors
Recent
2000 character limit reached

Freeway Merging in Congested Traffic based on Multipolicy Decision Making with Passive Actor Critic

Published 14 Jul 2017 in cs.AI and cs.RO | (1707.04489v1)

Abstract: Freeway merging in congested traffic is a significant challenge toward fully automated driving. Merging vehicles need to decide not only how to merge into a spot, but also where to merge. We present a method for the freeway merging based on multi-policy decision making with a reinforcement learning method called {\em passive actor-critic} (pAC), which learns with less knowledge of the system and without active exploration. The method selects a merging spot candidate by using the state value learned with pAC. We evaluate our method using real traffic data. Our experiments show that pAC achieves 92\% success rate to merge into a freeway, which is comparable to human decision making.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.