Papers
Topics
Authors
Recent
2000 character limit reached

Invariant random subgroups over non-Archimedean local fields (1707.03578v2)

Published 12 Jul 2017 in math.GR, math.KT, and math.RT

Abstract: Let $G$ be a higher rank semisimple linear algebraic group over a non-Archimedean local field. The simplicial complexes corresponding to any sequence of pairwise non-conjugate irreducible lattices in $G$ are Benjamini-Schramm convergent to the Bruhat-Tits building. Convergence of the relative Plancherel measures and normalized Betti numbers follows. This extends the work of Abert, Bergeron, Biringer, Gelander, Nokolov, Raimbault and Samet from real Lie groups to linear groups over arbitrary local fields. Along the way, various results concerning Invariant Random Subgroups and in particular a variant of the classical Borel density theorem are also extended.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.