Mirror symmetry for very affine hypersurfaces
Abstract: We show that the category of coherent sheaves on the toric boundary divisor of a smooth quasiprojective toric DM stack is equivalent to the wrapped Fukaya category of a hypersurface in a complex torus. Hypersurfaces with every Newton polytope can be obtained. Our proof has the following ingredients. Using recent results on localization, we may trade wrapped Fukaya categories for microlocal sheaf theory along the skeleton of the hypersurface. Using Mikhalkin-Viro patchworking, we identify the skeleton of the hypersurface with the boundary of the Fang-Liu-Treumann-Zaslow skeleton. By proving a new functoriality result for Bondal's coherent-constructible correspondence, we reduce the sheaf calculation to Kuwagaki's recent theorem on mirror symmetry for toric varieties.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.