Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The nilpotent variety of $W(1;n)_{p}$ is irreducible (1707.02881v3)

Published 10 Jul 2017 in math.RA and math.RT

Abstract: In the late 1980s, Premet conjectured that the nilpotent variety of any finite dimensional restricted Lie algebra over an algebraically closed field of characteristic $p>0$ is irreducible. This conjecture remains open, but it is known to hold for a large class of simple restricted Lie algebras, e.g. for Lie algebras of connected reductive algebraic groups, and for Cartan series $W, S$ and $H$. In this paper, with the assumption that $p>3$, we confirm this conjecture for the minimal $p$-envelope $W(1;n)_p$ of the Zassenhaus algebra $W(1;n)$ for all $n\geq 2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube