Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Min-Max-Delay Problem: NP-completeness, Algorithm, and Integrality Gap (1707.02650v4)

Published 9 Jul 2017 in cs.DS

Abstract: We study a delay-sensitive information flow problem where a source streams information to a sink over a directed graph G(V,E) at a fixed rate R possibly using multiple paths to minimize the maximum end-to-end delay, denoted as the Min-Max-Delay problem. Transmission over an edge incurs a constant delay within the capacity. We prove that Min-Max-Delay is weakly NP-complete, and demonstrate that it becomes strongly NP-complete if we require integer flow solution. We propose an optimal pseudo-polynomial time algorithm for Min-Max-Delay, with time complexity O(\log (Nd_{\max}) (N5d_{\max}{2.5})(\log R+N2d_{\max}\log(N2d_{\max}))), where N = \max{|V|,|E|} and d_{\max} is the maximum edge delay. Besides, we show that the integrality gap, which is defined as the ratio of the maximum delay of an optimal integer flow to the maximum delay of an optimal fractional flow, could be arbitrarily large.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.