Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Source - All Sinks Max Flows in Planar Digraphs (1210.4811v1)

Published 17 Oct 2012 in cs.DM, cs.DS, and math.CO

Abstract: Let G = (V,E) be a planar n-vertex digraph. Consider the problem of computing max st-flow values in G from a fixed source s to all sinks t in V{s}. We show how to solve this problem in near-linear O(n log3 n) time. Previously, no better solution was known than running a single-source single-sink max flow algorithm n-1 times, giving a total time bound of O(n2 log n) with the algorithm of Borradaile and Klein. An important implication is that all-pairs max st-flow values in G can be computed in near-quadratic time. This is close to optimal as the output size is Theta(n2). We give a quadratic lower bound on the number of distinct max flow values and an Omega(n3) lower bound for the total size of all min cut-sets. This distinguishes the problem from the undirected case where the number of distinct max flow values is O(n). Previous to our result, no algorithm which could solve the all-pairs max flow values problem faster than the time of Theta(n2) max-flow computations for every planar digraph was known. This result is accompanied with a data structure that reports min cut-sets. For fixed s and all t, after O(n{3/2} log{3/2} n) preprocessing time, it can report the set of arcs C crossing a min st-cut in time roughly proportional to the size of C.

Citations (32)

Summary

We haven't generated a summary for this paper yet.