Modeling smart growth of cities through entropy and logistics (1707.02360v1)
Abstract: We introduce a predictive algorithm for the smart growth of cities with populations upward of 100,000, allowing for extensive simulations of growth plans and their effects upon an urban populous. A smart growth metric is calculated to evaluate the progress of a city at each phase of its adaptation of the growth plan, which is measured using a weighted entropy method. The predictive algorithm itself is built from a unique differential model, which calculates the growth of a city from smart growth proposals that are individually assessed by a logistic weight model. These proposals are then sorted based on effectiveness and efficiency observed from the simulations, giving insight into the best approach to providing the target cities with a hopeful future.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.