Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Loss Functions for Semi-supervised Learning via Discriminative Adversarial Networks (1707.02198v1)

Published 7 Jul 2017 in cs.LG

Abstract: We propose discriminative adversarial networks (DAN) for semi-supervised learning and loss function learning. Our DAN approach builds upon generative adversarial networks (GANs) and conditional GANs but includes the key differentiator of using two discriminators instead of a generator and a discriminator. DAN can be seen as a framework to learn loss functions for predictors that also implements semi-supervised learning in a straightforward manner. We propose instantiations of DAN for two different prediction tasks: classification and ranking. Our experimental results on three datasets of different tasks demonstrate that DAN is a promising framework for both semi-supervised learning and learning loss functions for predictors. For all tasks, the semi-supervised capability of DAN can significantly boost the predictor performance for small labeled sets with minor architecture changes across tasks. Moreover, the loss functions automatically learned by DANs are very competitive and usually outperform the standard pairwise and negative log-likelihood loss functions for both semi-supervised and supervised learning.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.