2000 character limit reached
Real eigenvalues in the non-Hermitian Anderson model (1707.02181v2)
Published 7 Jul 2017 in math-ph, math.MP, math.PR, and math.SP
Abstract: The eigenvalues of the Hatano--Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.