Papers
Topics
Authors
Recent
2000 character limit reached

Optimal error estimates for Chebyshev approximations of functions with limited regularity in fractional Sobolev-type spaces

Published 4 Jul 2017 in math.NA | (1707.00840v3)

Abstract: In this paper, we introduce a new theoretical framework built upon fractional Sobolev-type spaces involving Riemann-Liouville (RL) fractional integrals/derivatives, which is naturally arisen from exact representations of Chebyshev expansion coefficients, for optimal error estimates of Chebyshev approximations to functions with limited regularity. The essential pieces of the puzzle for the error analysis include (i) fractional integration by parts (under the weakest possible conditions), and (ii) generalised Gegenbauer functions of fractional degree (GGF-Fs): a new family of special functions with notable fractional calculus properties. Under this framework, we are able to estimate the optimal decay rate of Chebyshev expansion coefficients for a large class of functions with interior and endpoint singularities, which are deemed suboptimal or complicated to characterize in existing literature. We can then derive optimal error estimates for spectral expansions and the related Chebyshev interpolation and quadrature measured in various norms, and also improve the available results in usual Sobolev spaces of integer regularity exponentials in several senses. As a by-product, this study results in some analytically perspicuous formulas particularly on GGF-Fs, which are potentially useful in spectral algorithms. The idea and analysis techniques can be extended to general Jacobi spectral approximations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.