Asymptotic Confidence Regions for High-dimensional Structured Sparsity (1706.09231v1)
Abstract: In the setting of high-dimensional linear regression models, we propose two frameworks for constructing pointwise and group confidence sets for penalized estimators which incorporate prior knowledge about the organization of the non-zero coefficients. This is done by desparsifying the estimator as in van de Geer et al. [18] and van de Geer and Stucky [17], then using an appropriate estimator for the precision matrix $\Theta$. In order to estimate the precision matrix a corresponding structured matrix norm penalty has to be introduced. After normalization the result is an asymptotic pivot. The asymptotic behavior is studied and simulations are added to study the differences between the two schemes.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.