Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Encoder-Decoder Shift-Reduce Syntactic Parsing (1706.07905v1)

Published 24 Jun 2017 in cs.CL

Abstract: Starting from NMT, encoder-decoder neu- ral networks have been used for many NLP problems. Graph-based models and transition-based models borrowing the en- coder components achieve state-of-the-art performance on dependency parsing and constituent parsing, respectively. How- ever, there has not been work empirically studying the encoder-decoder neural net- works for transition-based parsing. We apply a simple encoder-decoder to this end, achieving comparable results to the parser of Dyer et al. (2015) on standard de- pendency parsing, and outperforming the parser of Vinyals et al. (2015) on con- stituent parsing.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.