Papers
Topics
Authors
Recent
2000 character limit reached

Relating virtual knot invariants to links in $\mathbb{S}^{3}$ (1706.07756v2)

Published 23 Jun 2017 in math.GT

Abstract: Geometric interpretations of some virtual knot invariants are given in terms of invariants of links in $\mathbb{S}3$. Alexander polynomials of almost classical knots are shown to be specializations of the multi-variable Alexander polynomial of certain two-component boundary links of the form $J \sqcup K$ with $J$ a fibered knot. The index of a crossing, a common ingredient in the construction of virtual knot invariants, is related to the Milnor triple linking number of certain three-component links $J \sqcup K_1 \sqcup K_2$ with $J$ a connected sum of trefoils or figure-eights. Our main technical tool is virtual covers. This technique, due to Manturov and the first author, associates a virtual knot $\upsilon$ to a link $J \sqcup K$, where $J$ is fibered and $\text{lk}(J,K)=0$. Here we extend virtual covers to all multicomponent links $L=J \sqcup K$, with $K$ a knot. It is shown that an unknotted component $J_0$ can be added to $L$ so that $J_0 \sqcup J$ is fibered and $K$ has algebraic intersection number zero with a fiber of $J_0 \sqcup J$. This is called fiber stabilization. It provides an avenue for studying all links with virtual knots.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.