Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Strong laws of large number for intermediately trimmed Birkhoff sums of observables with infinite mean (1706.07369v4)

Published 22 Jun 2017 in math.DS

Abstract: We consider dynamical systems on a finite measure space fulfilling a spectral gap property and Birkhoff sums of a non-negative, non-integrable observable. For such systems we generalize strong laws of large numbers for intermediately trimmed sums only known for independent random variables. The results split up in trimming statements for general distribution functions and for regularly varying tail distributions. In both cases the trimming rate can be chosen in the same or almost the same way as in the i.i.d. case. As an example we show that piecewise expanding interval maps fulfill the necessary conditions for our limit laws. As a side result we obtain strong laws of large numbers for truncated Birkhoff sums.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.