Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mean convergence for intermediately trimmed Birkhoff sums of observables with regularly varying tails

Published 22 Mar 2019 in math.DS | (1903.09337v1)

Abstract: On a measure theoretical dynamical system with spectral gap property we consider non-integrable observables with regularly varying tails and fulfilling a mild mixing condition. We show that the normed trimmed sum process of these observables then converges in mean. This result is new also for the special case of i.i.d. random variables and contrasts the general case where mean convergence might fail even though a strong law of large numbers holds. To illuminate the required mixing condition we give an explicit example of a dynamical system fulfilling a spectral gap property and an observable with regularly varying tails but without the assumed mixing condition such that mean convergence fails.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.