Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Logarithmic improvements in $L^{p}$ bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature (1706.06704v2)

Published 20 Jun 2017 in math.AP, math.CA, and math.SP

Abstract: We consider the problem of proving $Lp$ bounds for eigenfunctions of the Laplacian in the high frequency limit in the presence of nonpositive curvature and more generally, manifolds without conjugate points. In particular, we prove estimates at the "critical exponent" $p_c = \frac{2(d+1)}{d-1}$, where a spectrum of scenarios for phase space concentration must be ruled out. Our work establishes a gain of an inverse power of the logarithm of the frequency in the bounds relative to the classical $Lp$ bounds of the second author.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.