Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Flexible High-Dimensional Unsupervised Learning with Missing Data (1706.06185v2)

Published 19 Jun 2017 in stat.CO and stat.ME

Abstract: The mixture of factor analyzers (MFA) model is a famous mixture model-based approach for unsupervised learning with high-dimensional data. It can be useful, inter alia, in situations where the data dimensionality far exceeds the number of observations. In recent years, the MFA model has been extended to non-Gaussian mixtures to account for clusters with heavier tail weight and/or asymmetry. The generalized hyperbolic factor analyzers (MGHFA) model is one such extension, which leads to a flexible modelling paradigm that accounts for both heavier tail weight and cluster asymmetry. In many practical applications, the occurrence of missing values often complicates data analyses. A generalization of the MGHFA is presented to accommodate missing values. Under a missing-at-random mechanism, we develop a computationally efficient alternating expectation conditional maximization algorithm for parameter estimation of the MGHFA model with different patterns of missing values. The imputation of missing values under an incomplete-data structure of MGHFA is also investigated. The performance of our proposed methodology is illustrated through the analysis of simulated and real data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.