Papers
Topics
Authors
Recent
Search
2000 character limit reached

Linking microscopic and macroscopic response in disordered solids

Published 19 Jun 2017 in cond-mat.soft | (1706.06153v1)

Abstract: The modulus of a rigid network of harmonic springs depends on the sum of the energies in each of the bonds due to the applied distortion: compression in the case of the bulk modulus, $B$, or shear in the case of the shear modulus, $\mathcal{G}$. The distortion need not be global and we introduce a local modulus, $L_{i}$, associated with changing the equilibrium length of a single bond, $i$, in the network. We show that $L_{i}$ is useful for understanding many aspects of the mechanical response of the entire system. For example, it allows an understanding, and efficient computation, of how each bond in a network contributes to global properties such as $B$ and $\mathcal{G}$ and sheds light on how a particular bond's contribution to one modulus is, or is not, correlated with its contribution to another.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.