Papers
Topics
Authors
Recent
2000 character limit reached

Geometric characterizations of inner uniformity through Gromov hyperbolicity (1706.05494v2)

Published 17 Jun 2017 in math.CV

Abstract: In this paper, we study the characterization of inner uniformity of bounded domains $G$ in $\IRn$, and prove that the following three conditions are equivalent: $(1)$ $G$ is inner uniform; $(2)$ $G$ is Gromov hyperbolic and its inner metric boundary is naturally quasisymmetrically equivalent to the Gromov boundary; $(3)$ $G$ is Gromov hyperbolic and linearly locally connected with respect to the inner metric. The equivalence between the conditions $(1)$ and $(2)$, and the implication from $(2)$ to $(3)$ affirmatively answer three questions raised by Bonk, Heinonen, and Koskela in 2001.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.