Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 51 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Average of Recentered Parallel MCMC for Big Data (1706.04780v2)

Published 15 Jun 2017 in stat.CO

Abstract: In big data context, traditional MCMC methods, such as Metropolis-Hastings algorithms and hybrid Monte Carlo, scale poorly because of their need to evaluate the likelihood over the whole data set at each iteration. In order to resurrect MCMC methods, numerous approaches belonging to two categories: divide-and-conquer and subsampling, are proposed. In this article, we study the parallel MCMC and propose a new combination method in the divide-and-conquer framework. Compared with some parallel MCMC methods, such as consensus Monte Carlo, Weierstrass Sampler, instead of sampling from subposteriors, our method runs MCMC on rescaled subposteriors, but share the same computation cost in the parallel stage. We also give the mathematical justification of our method and show its performance in several models. Besides, even though our new methods is proposed in parametric framework, it can been applied to non-parametric cases without difficulty.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube