Papers
Topics
Authors
Recent
2000 character limit reached

Convergence analysis of belief propagation for pairwise linear Gaussian models

Published 12 Jun 2017 in cs.LG and stat.ML | (1706.04074v4)

Abstract: Gaussian belief propagation (BP) has been widely used for distributed inference in large-scale networks such as the smart grid, sensor networks, and social networks, where local measurements/observations are scattered over a wide geographical area. One particular case is when two neighboring agents share a common observation. For example, to estimate voltage in the direct current (DC) power flow model, the current measurement over a power line is proportional to the voltage difference between two neighboring buses. When applying the Gaussian BP algorithm to this type of problem, the convergence condition remains an open issue. In this paper, we analyze the convergence properties of Gaussian BP for this pairwise linear Gaussian model. We show analytically that the updating information matrix converges at a geometric rate to a unique positive definite matrix with arbitrary positive semidefinite initial value and further provide the necessary and sufficient convergence condition for the belief mean vector to the optimal estimate.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.