Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On polynomially integrable Birkhoff billiards on surfaces of constant curvature (1706.04030v7)

Published 13 Jun 2017 in math.DS

Abstract: We present a solution of the algebraic version of Birkhoff Conjecture on integrable billiards. Namely we show that every polynomially integrable real bounded convex planar billiard with smooth boundary is an ellipse. We extend this result to billiards with piecewise-smooth and not necessarily convex boundary on arbitrary two-dimensional surface of constant curvature: plane, sphere, Lobachevsky (hyperbolic) plane; each of them being modeled as a plane or a (pseudo-) sphere in $\mathbb R3$ equipped with appropriate quadratic form. Namely, we show that a billiard is polynomially integrable, if and only if its boundary is a union of confocal conical arcs and appropriate geodesic segments. We also present a complexification of these results. These are joint results of Mikhail Bialy, Andrey Mironov and the author. The proof is split into two parts. The first part is given by Bialy and Mironov in their two joint papers. They considered the tautological projection of the boundary to $\mathbb{RP}2$ and studied its orthogonal-polar dual curve, which is piecewise algebraic, by S.V.Bolotin's theorem. By their arguments and another Bolotin's theorem, it suffices to show that each non-linear complex irreducible component of the dual curve is a conic. They have proved that all its singularities and inflection points (if any) lie in the projectivized zero locus of the corresponding quadratic form on $\mathbb C3$. The present paper provides the second part of the proof: we show that each above irreducible component is a conic and finish the solution of the Algebraic Birkhoff Conjecture in constant curvature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.