Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gaussian unitary ensemble with boundary spectrum singularity and $σ$-form of the Painlevé II equation (1706.03174v1)

Published 10 Jun 2017 in math-ph and math.MP

Abstract: We consider the Gaussian unitary ensemble perturbed by a Fisher-Hartwig singularity simultaneously of both root type and jump type. In the critical regime where the singularity approaches the soft edge, namely, the edge of the support of the equilibrium measure for the Gaussian weight, the asymptotics of the Hankel determinant and the recurrence coefficients, for the orthogonal polynomials associated with the perturbed Gaussian weight, are obtained and expressed in terms of a family of smooth solutions to the Painlev\'{e} XXXIV equation and the $\sigma$-form of the Painlev\'{e} II equation. In addition, we further obtain the double scaling limit of the distribution of the largest eigenvalue in a thinning procedure of the conditioning Gaussian unitary ensemble, and the double scaling limit of the correlation kernel for the critical perturbed Gaussian unitary ensemble. The asymptotic properties of the Painlev\'{e} XXXIV functions and the $\sigma$-form of the Painlev\'{e} II equation are also studied.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube