Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-sample Estimation of Bacterial Composition Matrix in Metagenomics Data (1706.02380v4)

Published 7 Jun 2017 in stat.ME, stat.AP, and stat.CO

Abstract: Metagenomics sequencing is routinely applied to quantify bacterial abundances in microbiome studies, where the bacterial composition is estimated based on the sequencing read counts. Due to limited sequencing depth and DNA dropouts, many rare bacterial taxa might not be captured in the final sequencing reads, which results in many zero counts. Naive composition estimation using count normalization leads to many zero proportions, which tend to result in inaccurate estimates of bacterial abundance and diversity. This paper takes a multi-sample approach to the estimation of bacterial abundances in order to borrow information across samples and across species. Empirical results from real data sets suggest that the composition matrix over multiple samples is approximately low rank, which motivates a regularized maximum likelihood estimation with a nuclear norm penalty. An efficient optimization algorithm using the generalized accelerated proximal gradient and Euclidean projection onto simplex space is developed. The theoretical upper bounds and the minimax lower bounds of the estimation errors, measured by the Kullback-Leibler divergence and the Frobenius norm, are established. Simulation studies demonstrate that the proposed estimator outperforms the naive estimators. The method is applied to an analysis of a human gut microbiome dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.