Papers
Topics
Authors
Recent
2000 character limit reached

Experimental demonstration of quantum learning speed-up with classical input data (1706.01561v3)

Published 5 Jun 2017 in quant-ph

Abstract: We consider quantum-classical hybrid machine learning in which large-scale input channels remain classical and small-scale working channels process quantum operations conditioned on classical input data. This does not require the conversion of classical (big) data to a quantum superposed state, in contrast to recently developed approaches for quantum machine learning. We performed optical experiments to illustrate a single-bit universal machine, which can be extended to a large-bit circuit for binary classification task. Our experimental machine exhibits quantum learning speed-up of approximately 36%, as compared to the fully classical machine. In addition, it features strong robustness against dephasing noise.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.