Papers
Topics
Authors
Recent
2000 character limit reached

A Joint Model for Question Answering and Question Generation (1706.01450v1)

Published 5 Jun 2017 in cs.CL, cs.AI, cs.LG, and cs.NE

Abstract: We propose a generative machine comprehension model that learns jointly to ask and answer questions based on documents. The proposed model uses a sequence-to-sequence framework that encodes the document and generates a question (answer) given an answer (question). Significant improvement in model performance is observed empirically on the SQuAD corpus, confirming our hypothesis that the model benefits from jointly learning to perform both tasks. We believe the joint model's novelty offers a new perspective on machine comprehension beyond architectural engineering, and serves as a first step towards autonomous information seeking.

Citations (104)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.