Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets (1706.00629v3)
Abstract: We rigorously derive a Kirchhoff plate theory, via $\Gamma$-convergence, from a three-di-men-sio-nal model that describes the finite elasticity of an elastically heterogeneous, thin sheet. The heterogeneity in the elastic properties of the material results in a spontaneous strain that depends on both the thickness and the plane variables $x'$. At the same time, the spontaneous strain is $h$-close to the identity, where $h$ is the small parameter quantifying the thickness. The 2D Kirchhoff limiting model is constrained to the set of isometric immersions of the mid-plane of the plate into $\mathbb{R}3$, with a corresponding energy that penalizes deviations of the curvature tensor associated with a deformation from a $x'$-dependent target curvature tensor. A discussion on the 2D minimizers is provided in the case where the target curvature tensor is piecewise constant. Finally, we apply the derived plate theory to the modeling of swelling-induced shape changes in heterogeneous thin gel sheets.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.