Bias-Variance Tradeoff of Graph Laplacian Regularizer (1706.00544v1)
Abstract: This paper presents a bias-variance tradeoff of graph Laplacian regularizer, which is widely used in graph signal processing and semi-supervised learning tasks. The scaling law of the optimal regularization parameter is specified in terms of the spectral graph properties and a novel signal-to-noise ratio parameter, which suggests selecting a mediocre regularization parameter is often suboptimal. The analysis is applied to three applications, including random, band-limited, and multiple-sampled graph signals. Experiments on synthetic and real-world graphs demonstrate near-optimal performance of the established analysis.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.