Papers
Topics
Authors
Recent
Search
2000 character limit reached

Machine Learning Unifies the Modelling of Materials and Molecules

Published 1 Jun 2017 in cond-mat.mtrl-sci and physics.chem-ph | (1706.00179v2)

Abstract: Determining the stability of molecules and condensed phases is the cornerstone of atomistic modelling, underpinning our understanding of chemical and materials properties and transformations. Here we show that a machine learning model, based on a local description of chemical environments and Bayesian statistical learning, provides a unified framework to predict atomic-scale properties. It captures the quantum mechanical effects governing the complex surface reconstructions of silicon, predicts the stability of different classes of molecules with chemical accuracy, and distinguishes active and inactive protein ligands with more than 99% reliability. The universality and the systematic nature of our framework provides new insight into the potential energy surface of materials and molecules.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.