Bayesian $l_0$-regularized Least Squares (1706.00098v2)
Abstract: Bayesian $l_0$-regularized least squares is a variable selection technique for high dimensional predictors. The challenge is optimizing a non-convex objective function via search over model space consisting of all possible predictor combinations. Spike-and-slab (a.k.a. Bernoulli-Gaussian) priors are the gold standard for Bayesian variable selection, with a caveat of computational speed and scalability. Single Best Replacement (SBR) provides a fast scalable alternative. We provide a link between Bayesian regularization and proximal updating, which provides an equivalence between finding a posterior mode and a posterior mean with a different regularization prior. This allows us to use SBR to find the spike-and-slab estimator. To illustrate our methodology, we provide simulation evidence and a real data example on the statistical properties and computational efficiency of SBR versus direct posterior sampling using spike-and-slab priors. Finally, we conclude with directions for future research.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.