Random matrix theory for low-frequency sound propagation in the ocean: a spectral statistics test (1705.10964v1)
Abstract: Problem of long-range sound propagation in the randomly-inhomogeneous deep ocean is considered. We examine a novel approach for modeling of wave propagation, developed by K.C.Hegewisch and S.Tomsovic. This approach relies on construction of a wavefield propagator using the random matrix theory (RMT). We study the ability of the RMT-based propagator to reproduce properties of the propagator corresponding to direct numerical solution of the parabolic equation. It is shown that mode coupling described by the RMT-based propagator is basically consistent with the direct Monte-Carlo simulation. The agreement is worsened only for relatively short distances, when long-lasting cross-mode correlations are significant. It is shown that the RMT-based propagator with properly chosen range step can reproduce some coherent features in spectral statistics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.