Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximation learning methods of Harmonic Mappings in relation to Hardy Spaces (1705.10596v1)

Published 24 May 2017 in math.NA and cs.LG

Abstract: A new Hardy space Hardy space approach of Dirichlet type problem based on Tikhonov regularization and Reproducing Hilbert kernel space is discussed in this paper, which turns out to be a typical extremal problem located on the upper upper-high complex plane. If considering this in the Hardy space, the optimization operator of this problem will be highly simplified and an efficient algorithm is possible. This is mainly realized by the help of reproducing properties of the functions in the Hardy space of upper-high complex plane, and the detail algorithm is proposed. Moreover, harmonic mappings, which is a significant geometric transformation, are commonly used in many applications such as image processing, since it describes the energy minimization mappings between individual manifolds. Particularly, when we focus on the planer mappings between two Euclid planer regions, the harmonic mappings are exist and unique, which is guaranteed solidly by the existence of harmonic function. This property is attractive and simulation results are shown in this paper to ensure the capability of applications such as planer shape distortion and surface registration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.