Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Inverse Problems in Hilbert Scales (2208.13289v1)

Published 28 Aug 2022 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: In this paper, we study the Tikhonov regularization scheme in Hilbert scales for the nonlinear statistical inverse problem with a general noise. The regularizing norm in this scheme is stronger than the norm in Hilbert space. We focus on developing a theoretical analysis for this scheme based on the conditional stability estimates. We utilize the concept of the distance function to establish the high probability estimates of the direct and reconstruction error in Reproducing kernel Hilbert space setting. Further, the explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through appropriate source condition. Our results improve and generalize previous results obtained in related settings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.