Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adaptive Classification for Prediction Under a Budget (1705.10194v1)

Published 26 May 2017 in stat.ML and cs.LG

Abstract: We propose a novel adaptive approximation approach for test-time resource-constrained prediction. Given an input instance at test-time, a gating function identifies a prediction model for the input among a collection of models. Our objective is to minimize overall average cost without sacrificing accuracy. We learn gating and prediction models on fully labeled training data by means of a bottom-up strategy. Our novel bottom-up method first trains a high-accuracy complex model. Then a low-complexity gating and prediction model are subsequently learned to adaptively approximate the high-accuracy model in regions where low-cost models are capable of making highly accurate predictions. We pose an empirical loss minimization problem with cost constraints to jointly train gating and prediction models. On a number of benchmark datasets our method outperforms state-of-the-art achieving higher accuracy for the same cost.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube