Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Covariant quantizations in plane and curved spaces (1705.09960v2)

Published 28 May 2017 in hep-th

Abstract: We present covariant quantization rules for nonsingular finite dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function $\omega(\theta)$, $\theta\in\left( 1,0\right)$, which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function $\omega \left( \theta \right)$. Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one $\omega(\theta)$ and by an additional function $\Theta \left( x,\xi \right)$. The above mentioned minimal family is a part at $\Theta =1$ of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in Polar coordinates, we directly obtain a correct result.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.