Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Vocabulary-informed Extreme Value Learning (1705.09887v2)

Published 28 May 2017 in cs.CV, math.ST, stat.ML, and stat.TH

Abstract: The novel unseen classes can be formulated as the extreme values of known classes. This inspired the recent works on open-set recognition \cite{Scheirer_2013_TPAMI,Scheirer_2014_TPAMIb,EVM}, which however can have no way of naming the novel unseen classes. To solve this problem, we propose the Extreme Value Learning (EVL) formulation to learn the mapping from visual feature to semantic space. To model the margin and coverage distributions of each class, the Vocabulary-informed Learning (ViL) is adopted by using vast open vocabulary in the semantic space. Essentially, by incorporating the EVL and ViL, we for the first time propose a novel semantic embedding paradigm -- Vocabulary-informed Extreme Value Learning (ViEVL), which embeds the visual features into semantic space in a probabilistic way. The learned embedding can be directly used to solve supervised learning, zero-shot and open set recognition simultaneously. Experiments on two benchmark datasets demonstrate the effectiveness of proposed frameworks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.